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Startup of the URAL-15 linear proton accelerator with
quadrupole rf focusing

-B. M. Gorshkov, S. A. Il'evskii, G. M. Kolomenskii, S. P. Kuznetsov, N. N. Kutorga,
A. P. Mal'tsev, I. G. Mal'tsev, K. G. Mirzoev, V. B. Stepanov, V. A. Teplyakov, and
I. M. Shalashov =~

Institute of High-Energy Physice. Protvino
(Submitted Scptember 28, 1976) .
Zh. Tekh Fiz 47, 23282331 (November 1977)

The URAL-1S5 accelerator is the first stage of a 30 MeV linear accelerator (the URAL-30), intended for
use as an injector into the booster of the proton synchrotron of the Institute of High-Energy Physics. The
basic parameters of the accelerator and the results of the first startup and adjustment experiments are
reported. Accelerated protons with an energy of 15.9 MeV have been obtained. The maximum accelerated
current is greater than 50 mA. The spectral width of the pulses is 1.2%. The normalized emittance is less
than 0.3 mrad-cm.
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FIG. 1. a) Block diagram of the URAL-30 accelerator: b) electrode shape;
C ) resonator cross sections. )
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Helmholtz Equations
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INVESTIGATIONS OF DIFFERENT RFQ ELECTRODE PROFILES FOR EASY MANUFACTURE*

P. Junior, H. Deitinghoff, A. Harth, W. Neumann, N. Zoubek
Institut fiir Angewandte Physik, University Frankfurt
Robert-Mayer-StraBe 2-4, 6000 Frankfurt am Main, FRG

Abstract

Four electrode profiles are analyzed with re-
spect to field harmonics in the three-dimensio-
nal potential caused by profiles, which deviate
from the ideal one. Emphasis is given to such
electrodes, which can easily be manufactured on
a conventional milling machine or a lathe.

The following versions are discussed: 1) the
*crankshaft* type, 2) the barrel profile, 3) the
trapezoidal electrodes, 4) the finger structure.

OQur computational method in calculating the
momenta is reported. Finally the influence of
relevant coefficients in the potential expansion
on particle motion is examplarily studied by
means of a 10 - 300 keV proton RFQ linac.

RFQ Profiles

Conventional RFQ linac designs are based on
the two term potentiall. But this involves par-
ticular demands on the electrodes. An example
was set by the Los Alamos POP experiment?, where
the manufacture of approximately ideal electro-
des was accomplished with a computerized milling
machine. However, the request for an easier con-
struction becomes obvious. Figs. 1 show princip-
les requiring tools more moderate and in consi-
deration of this the following configurations
shall be discussed.

1. The crankshaft structure of figs. la, 1b and
2 with constant bore radius R, = R, and rec-
tangularly varying distance Ry resp. R,.

2. The cylindrical barrels of figs. 12, 1% and

3 with constant distance Ry = RK and rectan-

gularly varying bores R; resp. R,.

Cylindrical rods with constant distance Ry

= Ry and trapeziodally varying bore, as figs.

1a, 1c and 4 illustrate. The principle is

realized with ¥ = 0.75 in our proton linac3?

The fingers with gaps in between, constant

bore R: = R2 as well as distance Rx = R, ac-

cording to figs. 1a, 1d. This scheme is rea-
lized in the GSI MAXILACS.

Deviations from the ideal two term case are ob-

vious, thus the performance of higher field mo-

ments is the aim of investigations.

3-D Computations
Use is made of the expansion of the potential?

(1

¥(r,¢,2) =¥ I AyuFaulrs0.2)
M=0

N=0

with

2M

r - cos2My . N=20

(2)

IZM(Nkr)coSZMcos Nkz Nz 1

and for the determination of the coefficients
ANM at given electrode geometry we have composed
a computer program. It is based on a three-di-
mensional least square fit of eq. (1) to the
spatial electrode surface. Considering all L re-
levant coefficients ANM = X1 in arbitrary se-
quence I = 0...L-1, those are gained as solutions
of an inhomogeneous system of L linear equations
I H, X, =R

(3)
koo TIK'T TR

where with eq. (2) the matrix elements are given
by surface integrals

Hig = I 1y Fygrdedz
Ry = /] Fuyrdedz

* Work supported by BMFT

(4)

extended over the surface r = r(¢,2) of the elec-
trodes. According to RFQ symmetry the axial range
is only w/2 and all Aygy vanish, when N+M even.
Boundary conditions yet undefined in the gap PQ
(fig. 1a) are settled by an assumed two-wire po-
tential here. The reliability of results, e. g.
what this approximation is concerned, is always
checked with the agreement to the voltage on the
electrodes, for a precision of about 1 % the or-
der L = 30 of eqgs. (3) is mostly required.

Results

Referring to our Vinac?+*+% figs. 5 demonstrate rele-
vant field harmonics occuring with the electro-
des 1 - 3 together with the two term coefficients
and it's approximation by a harmonic modulation,
which can be realized with a milling wheel of
constant curvature, however, the increasing cell
length in the linac complicates manufacture as
well. We have singled out as a representative
section the last one at 300 keV. As striking evi-
dence we state that a significant gain in acce-
leration rate A,, compared to the rate with ideal
Ayol at nearly unchanged focusing strength A,,
takes place in all our cases, however, accampa-
nied by an additive quadrupole term A;; and an
octupole term A,,. Dodekapoles A,y and A,y turn
out too small in 311 cases to influence particle
motion. Neither does jittering caused by Ay, play
a3 role. Effects on linear motion characterized
by the behaviour of the transverse phase advance
per period are illustrated in fig. 6. At given
transverse phase advance the acceleration rate
is more or less significantly improved with all
configurations 1 - 3, when compared to the ideal
electrode or it's harmonic approximaticn. This
is partially caused by the quadrupole term A;,
proving helpful when negative. Effects are illu-
strated by fig. 7, where a particle beam of 10
mA is traced through the linac. The plot shows
gains and losses due to A,, and A,, either ;n-
or excluded , effects seem negligible . It
seems that in all our cases the higher momenta
are too small to have any negative effect on par-
ticle motion, although they usually are not too
small for the proper evaluation of all coeffi-
cients. Here we can state that for proton linacs
admitting large transverse phase advances the
ideal surface profile has the disadvantage in
construction as well as in acceleration rate at
given phase advances. The behaviour of the fin-
gers (s. fig. 1d) is illustrated in fig. 8,
where the gap is varied. Together with a strong
Asy an impressive negative A, term shows up.
Now the consequence is that a strong overfocusing
happens with our proton data of fig. 6, however,
when we consider a typical situation with very
heavy ions® quite favourable transverse phase
advances occur with this structure. Present work
is concerned with effects in heavy ion accelera-
tion using all these electrodes, when low charge
states demand operation much nearer to the sta-
bility 1imits. Then of course the knowledge of
the ANy will be utilized for the determination
of peak surface fields.

Computations were carried out at the Hochschul -
rechenzentrum.
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RADIO-F REQUENCY QUAJRUPOLE VANE-TIP GEOMEIRIES™

K. R. Crandall, R. S. Mills, and T. P. Wangler, AT-1, MS H817
Los Alamos National Laboratory, Los Alamos, NM 87545

Summar

Radio-frequency quadrupole (RFQ)  linacs'.?
are becoming widely accepted in the accelerator com-
munity. They have the remarkable capability of simul-
taneously bunching low-energy ion beams and accel-
erating them to energies at which conventional accel-
erators can be used, accomplishing this with high-
transmission efficiencies and low-emittance growths.
The electric fields, used for radial focusing, bunch-
ing, and accelerating, are determined by the geometry
of the vane tips. The choite of the best vane-tip
geometry depends on considerations such as the peak
surface electric field, per cent of higher multipole
components, and ease of machining.

We review the vane-tip geometry based on the
“jdeal® two-term potential function and briefly des-
cribe a method for calculating the electric field com-
ponents in an RFQ cell with arbitrary vane-tip geom-
etry. We describe five basic geometries and use the
prototype RFQ design for the Fusion Materials Irradia-
tion Test (FMIT) accelerator as an example to compare
the characteristics of the various geometries.

Vane-Tip Geometry from Two-Term Potential Function

As a starting point for obtaining electric fields
and vane-tip geometry in RFQ linacsy-we take

u(r,8,z) = % [(;—)2 cos 28 + A lo(kr) cos k%]
[

(m

as the time-independent portion of the two-term poten-
tial (TTP) function.’ In this expression, V is the
intervane potential difference, and k = w/L, where
L = B\/2 is the length of one "cell"™ of the RFQ.
Although the cell length and other geometrical charac-
teristics change gradually throughout the linac, the
field analysis is done as if each cell were one ele-
ment in a completely periodic structure.

Let 2 = 0 at the beginning of a cell in which the
horizontal vanes (centered at & = 0) are at the
minimum displacement, a, from the z axis; z = L at the
end of the cell where the horizontal vane-tip dis-
placement is ma, and m, the modulation parameter, is
>1. The boundary conditions

U(a,0,0) = U(ma,0,L) = V/2

are used for calculating A and ry from £q. (1):

2

A= o ; (2)
n°1 (ka) + 1 (mka)
rg = a0 - A I (k)] (3)

If a2 and m are specified, A and r, can be calculated

directly. However, because focusing and acceleration
depend upon o and A, these quantities usually are

determined by beam-dynamics requirements, and a and m
are calculated by iterating Eqs. (2) and (3).

Tdork supported by the US Department of Energy.

Ideally, vane-tip geometries should correspond to
the +V/2 isopotential surfaces obtained from Eq. (1).
The longitudinal profile of the horizontal vane tip is
denoted by xp(z) and is found numerically from

x_\2
L2 =
(ro) + A lo(kxp) coskz=1 |, . (4)
The transverse radius of curvature at any Xp is
Zxolro +Q
Ot = xp W . (5)

where

Q=A kro I‘(kxp) cos kz .

Note that, at the center of the cell where cos kz = 0,

both Xg and o, are equal to Tor The property xp * g

at 2 = L/2 is taken as the fundamental definition of

To for all vane-tip geometries discussed in this

paper.

At any longitudinal position,
cross sections of the isopotential surfaces from
Eq. (1) are approximate hyperbolae. In practice, the
vane tips cannot conform exactly to these shapes
because adjacent vanes would approach each other
asymptotically, and the surface electric field would
increase indefinitely. Also, hyperbolic surfaces are
more difficult to machine than circular cross sec-
tions. For these reasons, RFQ vane tips have been
machined with circular arcs. The earlier versions
machined at Los Alamos had longitudinal profiles
agreeing with Eq. (4) and circular tips with radii
given by Eq. (5).

Calculation of Fields for Arbitrary Geometries

the transverse

For arbitrary vane-tip geometries, including the
geometry described in the previous section, one needs
2 reliable method for calculating the surface electric
field. Our approach to this problem has been to find
a good approximation for the charge density induced on
the vane-tip surfaces and then to derive the field
information from the charge density. For example, the
electric field at any point on the vane-tip surface is
directly proportional to the charge density at that
point; the intervane capacitance is proportional to
the total charge on a vane tip. The potential near
the vane tips can be calculated from the charge den-
sity and can be Fourier analyzed to determine the
amplitude of any multipole component.

Written in terms of the surface charge density o,

the potential at any point T near the vane tips is

U(r) = [ 6(F;%) o(3) ds (6)

where 6(F;3) is the potential produced at point © by a

unit charge located at point Sona vane-tip surface;
-

a(s) dS is the amount of charge 1in the infinitesimal



R. H. Stokes, K. R. Crandsall, J. E. Stovall, and D. A. Swenson

Los Alamos Scientifie Laboratoery
University of California
Los Alamos, New Mexico 87345

Summary

A method has been developed to analyze the beam
dynamics of the radic frequency quadrupole accelerating
structure. Calculations show thst this structure can
accept s dc beam at low velocity, bunch it with high
capture efficiency, and accslerate it to a velocity
suitable for injection into a drift tube linac.

Introduction

At present, the proposed use of radio-frequeancy
quadrupole (RFQ) structures for the acceleratiomn of’
low-velocity ions is receiving increased attention. Of
special importance is the structure proposed by Kap-
chinskii and Teplyakov! (K-T) which produces strong
focusing electric fields which are spatially continuous
along the sccelerator axis. The lomgitudinal accel-
erating fields which are aslso present are produced by
periodic variations of the radius of the pole tips. To
produce the required pole tip potentials several RF
systems haveé been proposed. The predominant effort at
LASL 1s to develop the four-vans resonator operating in
the TEz1p mode. Figure 1 shows a schematic view of
this type of resonator.

Figure 1.

The expected performance of the RFQ makes it an
attractive possibility for use in a variety of ac-
celerator systems. It has been recognized that linac
intensity limitations often occur at low velocities
where the radial focusing forces from magnetic quadru-
polas are veak, and where the longitudinal repulsive
forces act for a long time between accelerating gaps.
The use of a spatislly continuous electric quadrupole
force is attractive for the contaianment of such low-
velocity beams. In addition, the longitudinal focusing
1s greater than in an equivalent drift tube linac for
two reasons: (1) for the same frequency the RFQ fo-
cusing period 1s half as long, and (2) for the RFQ the
frequency can be higher for a given particle velocicy
because of the smaller sperture made possible by the
strong radial focusing forces.

0018-9499/79/0600-3469500.75 © 1979 IEEE

Beam Dynamics

Our method of calculating RFQ beam dynamics 1is
based on electric field distributions obtained from the
lowest order potential function.® The coordinate
system has been chosen so that the unit cell encom-
passes an acceleration gap in a symmetrical manner,
The unit cell is 8 _A/2 in length, where 8 c is the
synchronous velocigy. This i{s shown {a Figure 2.

2

fx T .

Figure 2.

Bo)
2
UNIT CELL

XV kAV
e "~ 3Z°T cosy - = Il(kr) cosks

BV --§§ r sin2y

KAV
!z -3 Io(kt) sinkz

i

where each component is to be multiplied by the time
factor sin (wt + ¢). The quantity k equals 21v/B°x.
and A and X are given by:

A= v -1
m* Io(h) + lo(mlu)

and
X-l-AIo(h) .

Our notation is the same as in Ref. 1 except that our
A equals 4/3 times the quantity @ used by K-T. The
quantity A, times V the potential difference between
vanes, is the change in the axial potentisl across one
unit cell., Therefore, E , the average axial field is
given by 2AV/g A. The q&;ncity X 4is a measure of the
radial focusing strength. It is unity for m = 1, and
decreases with increasing values of A, For m = 1.75
and kac<<l, both A and X are approximately equal to
0.5.

The hyperbola-like pole tip surfaces! which pro-
duce the above electric fields in the static approxi-
mation are described by the function:

2
x2 - y2 = r2 cos2y = %—[21 - A Io(kr) coskz] .

In our resonstor design we have characterized the pole
tip shapes by using two quantities derived from the
Ybove equation. One is the pole tip radius which ia
obtained through & numerical solution. For example,
to describa the pole tip radius in the x-z plane, let

3469



RFQ DEVELOPMENT AT LOS ALAMOS™

T. P. Wangler, K. R, Crandall, and R. H, Stokes, AT-1, MS H81?
Los Alamos National Laboratory
Los Alamos, NM 87545

Summary
The basic principles of the radio-frequency

quadrupole (RFQ) 1inac are reviewed and a summary -

of past and present Los Alamos work {s presented.
Some beam-dynamics effects, i{mportant for RFQ
design, are discussed. A design example is shown
for xenon and a brief discussion of low-frequency
RFQ structures is given,

Introduction

The RFQ 1s an {nvention of Kapchinskii{ and
Teplyakov.! We can understand RFQ linac operat-
ing principles by considering properties of a sim-
ple 2D electric quadrupole (Fig. 1). There are
four electrodes or poles, charged so that the volt-
age between adjacent poles is V, and the radial
aperture 3t the pole tip is a. For the static case
the potential can be expressed in polar coordinates
r and @ as is shown fin the figure. 1If a posi-
tive beam is introduced in the central region, it
will be focused horizontally and defocused verti-
cally for the polarity shown in Fig. 1. An overall
strong focusing in both planes will occur if the
polarity is alternated. In the RFQ the polarity is

(IJ=% (‘% )zcos 26

Fig. 1. Cross section of an electric quadrupole
with radial aperture a and voltage V
between poles. The potential function ¢ is
given in polar coordinates r and .

*Work supported by the US Department of Energy.
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alternated by varying the voltage on the pales
sinusoidally in time.

The potential on axis (r=0) in Fig. 1 is zero.
To obtain an accelerating field along the quadru-
pole axis it {s necessary to produce a nonzero and
spatially varying potential on axis. This can be
done by making unequal radial apertures for adja-
cent pole tips (Fig. 2) where the horizontal aper-
tures are a and the vertical apertures are ma. The
potential now consists of the two terms shown in
Fig. 2: the quadrupole term, which is reduced by
the factor x, and the term A, which is nonzero
on axis. It is easy to show that the sign of this
second term is positive when the positive poles
have the smaller radial aperture, but is negative
when the negative pole apertures are smaller. This
suggests that spatially modulated vanes will create
a spatially modulated potential on axis, and conse-
quently an accelerating field for particles prop-
erly phased. :

@=L [ X(£) cos 26 +A]

m*-| __2
A=miar XemeeT

Fig. 2. Cross section of an electric quadrupole
with unequal apertures a and am, and volt-
age V between poles. The potential func-
tion & is given in polar coordinates r

and 6.,
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p. Junior et al., ibidem p. 2639

A. Schempp et al., this conference

R.W. Miller et al., this conference

A. Septier, Advances in Electronics and Elec-
tron Physics , Academic Press: New York, Lon-
don, 1961
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1a Transverse cross sections with bore ra-
dii R, and R,, dashed hyperbolas corre-
spond to two term case. Note that with
types 2 and 3 at constant distance
x = Ry a larger curvature radius com-
pared ¥o those of the dashed hyperbolas

Fig.

is necessarily involved Ry = a + b usual-

1y being taken. In cases 1 and 4 the
bore radius agrees with 1.125 a7, Peak
surface field limitations are not consi-

dered,
34 — *V
0 3 :
t ™! ®w© 3 on —kz
b 2 2
4
Y -v

Fig. 1b Longitudinal rectangular cross sections
of types 1 and 2

:
HZZN
1A : -V

Fig. 1c Longitudinal trapezoidal cross section
of type 3
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Fig. 1d Longitudinal finger scheme type 4, where
acceleration Ay, is determined by the
gap g, tathe required

\\
\\
Fig. 2 Sketch of crankshaft, simple milling

tool required

B

Fig. 3 Sketch of barrels, lathe required

"

Fig. 4 Sketch of trapezoid, lathe required
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. section with ka = 0.274 versus modulation

(a = 3 mm, 108 MHz, 300 keV proton energy)
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Fig. 6

s Transmission

-

0.6 08 A

0

€0so, versus A, of figs. 5, electrode
voltage 30 kV
1 crankshaft, 2 barrel, 3 trapezoid

= 0.4n, 4 trapezoid V= 0.751, 5 ideal,
6 approximation of §
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%

Fig. 7
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cosg, -

jan]
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Gains W and losses B2 of particles
due to A;; in proton linac?+“,5. Trans-
mission about 6 mA, shaper omitted in
design, PARMTEQ code, transmission ver-
sus phase plotted.
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Fig. 8

Field harmonics of fingers type 4 with
ka = 0.274 and coso, versus gap in % of
BA, a3 = 6 mm, 13.5 MHz, 18.75 keV/amu
energy, cosc, corresponding to
1. 120 kV for ions with z/amu =
resp. 2. 150 kv, 1/208

Legend of curves as in fig. 5

1/130
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Fig. 3 Optimum beam current VTimit Igax, unde-
pressed phase advance o,, undepressed
transverse acceptance ¢ (normalized)
and length of gentle buncher versus elec-
trode voltage and Kilpatrick factor
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Fig. 4 Cross sections of electrodes
a) longitudinal scheme
b) transverse scheme and potential di -
stribution calculated with the Herr-
mannsfeldt code!* at z = 0 in the
case of modulation 2

Tade]

1.24

1.4

2

Herrmannsteldt

125 15 W5 2 2

Fig. 5 Field enhancements ver:

Curve 1 formula for twt
curve 2 exact calculat:




(3
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Solve for Fields in Gap Region, find radii a,b of cones
as function of z.

¥ = Al (kr)sin(kz) + BrZcos(2¢)
k is not related to gA/2, can be chosen. Potentials
+V/2 on drift tubes and cones.
Find
A = V/[2sin(kg/2)l (kr,)]
B = VI2+( (keI (ke /1 (kr )1/ 2(r 241 ,2)
2Ba2 = V{1-[l (ka)/l (kr N[sin(kz)/sin(kg/2)]}
Then the cone radius is determined as a fcn. of z.



“
Energy gain

Get E,, calculate the energy gained in a half cell of
length gA/2. (¥ o cos(wt-4))

AE =T eV cosé

T = [cos(Trg/g)) +( 211/kgN)cot(kg/2)sin(T1g/g))]

1 - (211/8Xk)?
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